Chapitre 2

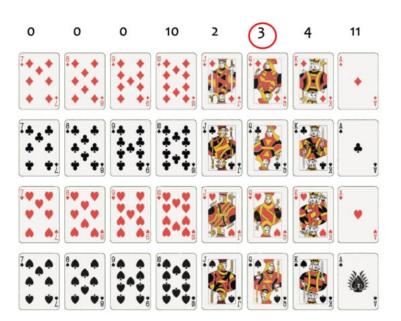
Variables aléatoires discrètes et continues

Exemple 13

Considérons un jeu de belote sans atout.

Chaque carte a la valeur x suivant :

 $7 \mapsto 0 \quad 8 \mapsto 0 \quad 9 \mapsto 0 \quad 10 \mapsto 10 \ valet \mapsto 2 \ dame \mapsto 3 \quad roi \mapsto 4 \ as \mapsto 11$



Par exemple, les quatres dames ont pour valeur 3 : $X(\ll Dame\ de\ coeur\ \gg)=3$

Soit Ω l'ensemble des tirages d'une des 32 cartes avec $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$ espace probabilisé par équiprobabilité : $\mathbb{P}(\omega_i) = \frac{1}{32}$.

Par exemple, l'événement :on a tiré la dame de coeur, noté « Dame de coeur », a une probabilité : $\mathbb{P}(\ll Dame\ de\ coeur\ \gg) = \frac{1}{32}$

On considère l'application $X:\Omega\longrightarrow\mathbb{R}$ qui à un tirage associe sa valeur.

Son image est notée $X(\Omega) = \{0; 2; 3, 4; 10; 11\}.$

On dira que X est une variable aléatoire sur Ω à valeurs réelles.

On veut savoir quelle est la probabilité d'obtenir comme résultat du tirage une certaine valeur x de \mathbb{R} , par exemple x=3. on notera cette probabilité : $\mathbb{P}(X=3)$.

Ona X=3 dans le cas des quatres \ll dames \gg , qui ont pour image 3 par l'application

X. L'image réciproque de $\{3\}$ par X, que l'on note $X^{-1}(\{3\})$, est constituée des quatre $\ll dames \gg$.

Chaque
$$\ll$$
 dame \gg a une probabilité $\frac{1}{32}$ d'être tirée, et donc $\mathbb{P}(X=3) = \frac{4}{32} = \frac{1}{8}$.

De
$$\hat{meme}: \mathbb{P}(X=0) = \frac{12}{32}, \ \mathbb{P}(X=2) = \frac{4}{32}, \ \mathbb{P}(X=3) = \frac{4}{32}$$

$$\mathbb{P}(X=4) = \frac{4}{32}, \ \mathbb{P}(X=11) = \frac{4}{32}, \ \mathbb{P}(X=10) = \frac{4}{32}$$

$$Et \ \forall x \in \mathbb{R} \backslash X(\Omega), \ \mathbb{P}(X = x) = 0$$

2.1 Variable aléatoires

Définition 2.1.1

Soient (Ω, \mathcal{T}) et (Ω', \mathcal{T}') deux espaces probabilisables.

Soit l'application $X: \Omega \longrightarrow \Omega'$

$$\omega \longmapsto X(\omega)$$

On dit que X est une application mesurable, ou une variable aléatoire de (Ω, \mathcal{T}) vers (Ω', \mathcal{T}') si et seulement si : $\forall A' \in \mathcal{T}', \ X^{-1}(A') \in \mathcal{T}$ (l'image réciproque par X d'un événement de Ω' est un événement de Ω).

Rappel:

Pour toute application f définie de E dans E', et pour un sous-ensemble $A' \subset E'$ de l'ensemble d'arrivée, on note $f^{-1}(A')$ le sous-ensemble de E constitué de tous les éléments de E dont l'image est dans A': $f^{-1}(A') = \{x \in E/f(x) \in A'\}$

Remarque 2.1.1

Si $\mathcal{T} = \mathcal{P}(\Omega)$ (on parle de "tribu totale"), alors $\forall A' \in \mathcal{T}'$, $X^{-1}(A') \subset \Omega$ donc $X^{-1}(A') \in \mathcal{P}(\Omega)$. Toute application X de $(\Omega, \mathcal{P}(\Omega))$ vers (Ω', \mathcal{T}') définit dans ce cas, une application mesurable.

2.2 Variables aléatoires réelle discrète

Définition 2.2.1

Soit $(\Omega, \mathcal{T}, \mathcal{P})$ un espace probabilisé. On considère $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ espace probabilisable, avec $\mathcal{B}_{\mathbb{R}}$ la tribu des boréliens.

Soit $X:\Omega\longrightarrow\mathbb{R}$

$$\omega \longmapsto X(\omega) \text{ telle que } \forall B \in \mathcal{B}_{\mathbb{R}}, \text{ on a } X^{-1}(B) \in \mathcal{T}.$$

Alors X est une application mesurable, appelée variable aléatoire réelle, qu'on notera VAR. Si $X(\Omega)$ est discrète (fini ou infini dénombrable), alors X est dite variable aléatoire réelle discrète, qu'on notera VARD.

Remarque 2.2.1

Pour montrer que X est une **VARD** il faut et il suffit de montrer que : $\forall x_i \in X(\Omega), \ X^{-1}(\{x_i\}) \in \mathcal{T}.$

Exemple 14

On définit deux applications :
$$X_1: \left\{ \begin{array}{l} \Omega \longrightarrow \mathbb{R} \\ a \longmapsto 0 \\ b \longmapsto 1 \\ c \longmapsto 1 \end{array} \right. \text{ et } X_2: \left\{ \begin{array}{l} \Omega \longrightarrow \mathbb{R} \\ a \longmapsto 0 \\ c \longmapsto 1 \end{array} \right.$$

On a
$$X_1(\Omega) = X_2(\Omega) = \{0, 1\}.$$

- $\forall x \in \mathbb{R} \setminus \{0; 1\}, X_1^{-1}(\{x\}) = \emptyset \text{ et } \emptyset \in \mathcal{T} \\
 X_1^{-1}(\{0\}) = \{a\} \text{ et } \{a\} \in \mathcal{T} \\
 X_1^{-1}(\{1\}) = \{b, c\} \text{ et } \{b, c\} \in \mathcal{T} \\
 Donc X_1 \text{ définit bien une } \mathbf{VARD}.$

En revanche, $X_2^{-1}(\{1\}) = \{c\}$ et $\{c\} \notin \mathcal{T}$, donc X_2 ne définit pas une **VARD**.

Remarque 2.2.2

Pour qu'une application soit mesurable, il est nécessaire qu'elle soit constante sur chaque événement élémentaire.

2.2.1Probabilité image et loi de probabilité

2.2.1.1Probabilité image

Définition 2.2.2

Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, (Ω', \mathcal{T}') un espace probabilisable, et X une application

mesurable de
$$(\Omega, \mathcal{T})$$
 vers (Ω', \mathcal{T}') .

On définit l'application $\mathbb{P}_X : \begin{cases} \mathcal{T}' \longrightarrow [0, 1] \\ A' \longmapsto \mathbb{P}_X(A') = \mathbb{P}(X^{-1}(A')) \end{cases}$
L'application \mathbb{P}_X s'appelle la probabilité image de \mathbb{P} par X et $(\Omega', \mathcal{T}', \mathbb{P}_X)$ est appelé espace

probabilisé image.

Pour tout $A' \in \mathcal{T}'$, on a bien $X^{-1}(A') \in \mathcal{T}$, et puisqu'il est dans la tribu, sa mesure de sa probabilité est connue c'est à dire $\mathbb{P}(X^{-1}(A'))$ existe.

$$X$$
 est une variable aléatoire , $X:\Omega \longrightarrow \Omega'$
On peut définir $\mathbb{P}_X: \left\{ \begin{array}{l} \mathcal{T}' \longrightarrow \mathcal{T} \longrightarrow [0,1] \\ A' \longmapsto X^{-1}(A') \longmapsto \mathbb{P}(X^{-1}(A')) \end{array} \right.$
Vérifions que \mathbb{P}_X définit bien une probabilité sur (Ω', \mathcal{T}') :

- $\forall A' \in \mathcal{T}', \ \mathbb{P}_X(A') \geq 0 \ \text{car} \ \mathbb{P}(X^{-1}(A')) \geq 0.$
- . $\mathbb{P}_X(\Omega') = \mathbb{P}(X^{-1}(\Omega')) = \mathbb{P}(\Omega) = 1$
- . Soit une famille dénombrable d'événements $(A_i')_{i\in I}$ de \mathcal{T}' , incompatibles deux à deux :

$$\mathbb{P}_X\Big(\bigcup_{i\in I}A_i'\Big) = \mathbb{P}\Big(X^{-1}\Big(\bigcup_{i\in I}A_i'\Big)\Big) = \mathbb{P}\Big(\bigcup_{i\in I}X^{-1}(A_i')\Big) = \sum_{i\in I}\mathbb{P}(X^{-1}(A_i')) = \sum_{i\in I}\mathbb{P}_X(A_i')$$

2.2.1.2Loi de probabilité:

Notations:

Si X est une variable aléatoire réelle définie sur \mathbb{R} , et si $a \in \mathbb{R}$ alors :

1.
$$(X = a) = \{A \subset \Omega / X(A) = a\}$$

- 2. $(X \le a) = \{A \subset \Omega / X(A) \le a\}$
- 3. $(a < X \le b) = \{A \subset \Omega / a < X(A) \le b\}$
- 4. Si E est une partie de \mathbb{R} , alors $(X = E) = \{A \subset \Omega/X(A) = E\}$

Définition 2.2.3

On appelle loi de probabilité d'une variable aléatoire réelle discrète X définie sur (Ω, \mathcal{T}) , la donnée des probabilités $p_i = \mathbb{P}(X = x_i)$, pour tout $x_i \in X(\Omega)$; $i \in \mathbb{N}$.

Plusieurs cas se présentent

a) Variable aléatoire discrète finie :

$$X(\Omega) = \{x_1, x_2, ..., x_n\}.$$

La loi de probabilité de X est parfaitement déterminée par la donnée des quantités $p_i = \mathbb{P}(X = x_i)$, pour tout i = 1, 2, ..., n, vérifiant

$$\left\{\begin{array}{l} p_i \geq 0, \forall i = 1, 2, ..., r \\ \sum_{i=1}^n p_i = 1 \end{array}\right.$$

Exemple 15

La loi de probabilité associée à un jeu de belout sans atout (exemple 13) est présentée dans le tableau suivant :

x_i	0	2	3	4	10	11	
p_i	$\frac{12}{32}$	$\frac{4}{32}$	$\frac{4}{32}$	$\frac{4}{32}$	$\frac{4}{32}$	$\frac{4}{32}$	1

Exemple 16

La loi uniforme associée à un lancer de dé à six faces numérotées est présentée dans le tableau suivant :

x_i	1	2	3	4	5	6	
p_i	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	1

b) Variable aléatoire discrète dénombrable :

$$X(\Omega) = \{x_1, x_2, ..., x_n,\}.$$

La loi de probabilité de X est parfaitement déterminée par la donnée des quantités $p_i = \mathbb{P}(X = x_i)$, pour tout i = 1, 2, ..., n,, vérifiant

$$\begin{cases} p_i \ge 0, \forall i = 1, 2, \dots \\ \sum_{i=1}^{+\infty} p_i = 1 \end{cases}$$

2.2.2 Fonction de répartition d'une variable aléatoire réelle

2.2.2.1 Probabilté attachée à un intervalle

On considère $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mathbb{P}_X)$ l'espace probabilisé image et $[a, b] \in \mathcal{B}_{\mathbb{R}}$ Pour a < b, on a pour réunion disjointe : $\mathbb{P}_X(]-\infty,b]) = \mathbb{P}_X(]-\infty,a]) + \mathbb{P}_X(]a,b]) ou <math>\mathbb{P}_X(X \leq b) = \mathbb{P}_X(X \leq a) + \mathbb{P}_X(a < X \leq b)$. Ainsi on a

$$\forall (a,b) \in \mathbb{R}^2$$
, $\mathbb{P}_X(a < X \le b) = \mathbb{P}_X(X \le b) - \mathbb{P}_X(X \le a)$

Définition de la fonction de répartition 2.2.2.2

Définition 2.2.4

La fonction de répartition de la variable aléatoire réelle X est définie par

$$F: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \mathbb{P}(X \le x) \end{array} \right.$$

Remarque 2.2.3

La fonction de répartition de la variable aléatoire réelle discréte X est une fonction en escalier définie par :

$$F(x) = \sum_{\{x_i \in X(\Omega)/x_i \le x\}} \mathbb{P}(X = x_i)$$

Si par exemple X prend les variables $x_1 < x_2 < ... < x_n$, on aura F(x) = 0 pour $x < x_1$, puis le graphe de F présentera un saut en chaque point x_i , jusqu'à la valeur F(x) = 1 pour

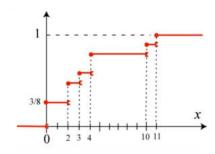
On peut déduire de F les probabilités individuelles par

$$p_i = \begin{cases} \mathbb{P}(X = x_i) = F(x_{i+1}) - F(x_i) & \text{si } 1 \le i \le n - 1 \\ \mathbb{P}(X = x_n) = 1 - F(x_n) & \text{si } i = n \end{cases}$$

Exemple 17

On s'intéresse au jeu de belote sans atout, on a $X(\Omega)=\{0,2,3,4,10,11\}$. Alors $F: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \mathbb{P}(X \leq x) \end{array} \right. \ \textit{v\'erifie selon les valeurs de } x: \\ Si \ x < 0, \ F(x) = 0, \ et \ puis: \end{array}$

Si
$$0 \le x < 2$$
, $F(x) = \frac{12}{32} = \frac{3}{8}$, Si $2 \le x < 3$, $F(x) = \frac{16}{32} = \frac{1}{2}$, Si $3 \le x < 4$, $F(x) = \frac{20}{32} = \frac{5}{8}$, Si $4 \le x < 10$, $F(x) = \frac{24}{32} = \frac{6}{8}$, Si $10 \le x < 11$, $F(x) = \frac{28}{32} = \frac{7}{8}$, Si $11 \le x$, $F(x) = 1$



Propriété 2.2.1

Soit X une VAR de fonction de répartition F.

1.
$$\forall x \in \mathbb{R}, \ 0 \le F(x) \le 1$$

2.
$$\forall (a, b) \in \mathbb{R}^2$$
, $\mathbb{P}_X(a < X \le b) = F(b) - F(a)$.

3.
$$\lim_{x \to -\infty} F(x) = 0$$
, notée $F(-\infty) = 0$

- 4. $\lim_{x \to +\infty} F(x) = 1$, notée $F(+\infty) = 1$
- 5. F est une application croissante sur \mathbb{R} .
- 6. $\forall a \in \mathbb{R}, F \text{ est continue } a \text{ droite en } a.$
- 7. L'ensemble des points de discontinuité de F est au plus dénombrable

Démonstration :

- 1. Vient du fait que la probabilité d'un évènement est un nombre compris entre 0 et 1.
- 2. Cela a été vu juste au-dessus.
- 3. $]-\infty,x]\longrightarrow\emptyset$ quand $x\to-\infty$. Par continuité monotonne on a, $\lim_{x \to -\infty} \mathbb{P}_X(] - \infty, x]) = \mathbb{P}_X(\emptyset) = 0, \quad et \quad \lim_{x \to -\infty} \mathbb{P}(X \le x) = \lim_{x \to -\infty} F(x) = 0$
- 4. $]-\infty,x]=]x,+\infty[\longrightarrow\emptyset \text{ quand }x\rightarrow+\infty. \text{ Ainsi }$ $\lim_{x \to +\infty} \mathbb{P}_X(]x, +\infty[) = \mathbb{P}_X(\emptyset) = 0 \text{ et } \mathbb{P}(X > x) = 1 - \mathbb{P}(X \le x) = 1 - F(x)$ $d'où \lim_{x \to +\infty} F(x) = 1$
- 5. $\forall (x,y) \in \mathbb{R}^2$) tel que $x \leq y$, on a $F(y) = \mathbb{P}(X \le y) = \mathbb{P}\left[(X \le x) \cup (x < X \le y)\right] = F(x) + \mathbb{P}(x < X \le y)$ $\ge F(x)$
- 6. Etudions la continuité en un poit $a \in \mathbb{R}$.

Continuité à gauche :

 $[x,a] \rightarrow \{a\}$ quand $x \rightarrow a^-$. Par l'axiome de continuité monotonne, $\lim \mathbb{P}_X(]x,a]) = \mathbb{P}(X=a), \ donc \ \lim \mathbb{P}(x < X \le a) = \mathbb{P}(X=a).$

- -) Si $\mathbb{P}(X = a) = 0$, alors $\lim_{x \to a} F(x) = F(a)$ et F est continue à gauche en a.

Continuité à droite :

 $[a,x] \to \emptyset$ quand $x \to a^+$. Par l'axiome de continuité monotonne, $\lim \mathbb{P}_X([a,x]) = 0$ donc $\lim_{x \to a} F(x) = F(a)$. Ainsi $\forall a \in \mathbb{R}$, F est continue à droite en a.

2.2.3 Couple de variables aléatoires réelles discrètes

2.2.3.1**Définition**

On considère $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé et l'espace probabilisable $(\mathbb{R}^2, \mathcal{B}_{\mathbb{R}^2})$ muni da la tribu engendrée par les borels de \mathbb{R}^2 de la forme $]-\infty, x[\times]-\infty, y[.$

Définition 2.2.5

Une application $V:\Omega\longrightarrow\mathbb{R}^2$ est mesurable ou constitue un couple aléatoire, si pour tout $B \in \mathcal{B}_{\mathbb{R}^2}, \ V^{-1}(B) \in \mathcal{T}.$

Si $V(\Omega)$ est fini ou dénombrable dans \mathbb{R}^2 , le couple aléatoire V est dit couple de variables aléatoires réelles discrètes.

On peut alors transporter la probabilité P,

$$\mathbb{P}_V: \mathcal{B}_{\mathbb{R}^2} \longrightarrow \mathcal{T} \longrightarrow [0, 1]$$
$$B \longmapsto V^{-1}(B) \longmapsto \mathbb{P}(V^{-1}(B))$$

On obtient $(\mathbb{R}^2, \mathcal{B}_{\mathbb{R}^2}, \mathbb{P}_V)$ espace probabilisé image et V = (X, Y) définit un couple de variables aléatoires réelles.

Remarque 2.2.4

Pour montrer que V est un couple aléatoire discret il faut et il suffit de montrer que $\forall \{(i,j)\} \in \mathcal{B}_{\mathbb{R}^2}, \ V^{-1}(\{(i,j)\}) \in \mathcal{T}$

Notons
$$p_{i,j} = \mathbb{P}(V^{-1}(\{(i,j)\})) = \mathbb{P}(X=i,Y=j)$$
, alors
$$\begin{cases} \forall (i,j) \in V(\Omega), p_{i,j} \geq 0 \\ \forall (i,j) \notin V(\Omega), p_{i,j} = 0 \end{cases}$$

Exemple 18

On jette successivement 3 pièces non truquées. On désigne par X le nombre de piles obtenus avec les 2 premières pièces et par Y le nombre de piles obtenus avec les 3 pièces.

On cherche la loi de probabilté du couple V = (X, Y).

On a
$$X(\Omega) = \{0, 1, 2\}$$
 et $Y(\Omega) = \{0, 1, 2, 3\}$. Alors $V(\Omega) \subset X(\Omega) \times Y(\Omega)$.

On remplit le tableau suivant, en déterminant les $p_{i,j}$.

$$V^{-1}(\{(0,0)\}) = F_1 F_2 F_3 \ donc \ \mathbb{P}(F_1 F_2 F_3) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \ donc \ p_{0,0} = \frac{1}{8}.$$

$$V^{-1}(\{(0,2)\}) = \emptyset \ donc \ p_{0,2} = 0$$

$$V^{-1}(\{(1,1)\}) = \{P_1 F_2 F_3, F_1 P_2 F_3\} \ donc \ p_{1,1} = \frac{2}{9} \ etc.$$

$X = i \backslash Y = j$	j = 0	j = 1	j=2	j=3	$Loi\ de\ X$
i = 0	$\frac{1}{8}$	$\frac{1}{8}$	0	0	$\frac{2}{8}$
i = 1	0	$\frac{2}{8}$	$\frac{2}{8}$	0	$\frac{4}{8}$
i=2	0	0	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{2}{8}$
Loi de Y	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1

Remarquons que l'on a $\sum_{i=0}^{2} \sum_{j=0}^{3} p_{i,j} = 1$.

2.2.3.2 Lois marginales

Définition 2.2.6

On appelle Loi marginale de X (resp. de Y) la loi de X (resp. de Y) qui découle de la loi du couple V=(X,Y).

2.2.3.3 Loi marginale de X:

Evaluons la probabilité que X prenne la valeur $i \in X(\Omega)$. Notons $B_{X=i}$ l'événement X=i. $\mathbb{P}(X=i) = \mathbb{P}_V(B_{X=i}) = \mathbb{P}(\cup_j V^{-1}(\{(i,j)\})) = \sum_j \mathbb{P}(V^{-1}(\{(i,j)\})) = \sum_j \mathbb{P}_V(\{(i,j)\}) = \sum_j p_{i,j}$

On somme donc sur les lignes du tableau précédent :

X	0	1	2	\sum
$p_{i,.}$	$\frac{2}{8}$	$\frac{4}{8}$	$\frac{2}{8}$	1

$$\mathbb{P}(X=i) = \sum_{j} p_{i,j}$$
 que l'on note $p_{i,.}$

On vérifie que
$$\sum_{i} p_{i,.} = \sum_{i} \sum_{j} p_{i,j} = 1.$$

2.2.3.4 Loi marginale de Y:

De même pour tout $j \in Y(\Omega)$ on a :

$$\mathbb{P}(Y=j) = \sum p_{i,j}$$
 que l'on note $p_{.,j}$

$$\mathbb{P}(Y=j) = \sum_{i} p_{i,j} \text{ que l'on note } p_{.,j}$$

Et de même
$$\sum_{j} p_{.,j} = \sum_{j} \sum_{i} p_{i,j}.$$

Y	0	1	2	3	\sum
$p_{.,j}$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	1

Remarque 2.2.5

La connaissance de la loi du couple entraîne donc la connaissance de la loi du chaque variable du couple. La réciproque n'est pas vraie en général.

2.2.3.5Couple indépendant

En général, $p_{i,j} \neq p_{i,.} \times p_{.,j}$

Définition 2.2.7

On dit que le couple V = (X, Y) est indépendant ou que les varaibles X et Y sont indépendants si et seulement si

$$\forall (i,j) \in V(\Omega), \quad p_{i,j} = p_{i,.} \times p_{.,j}$$

Remarque 2.2.6

Si le couple est indépendant, la connaissance de la loi suivie par chaque variable aléatoire entraîne celle de la loi du couple.

Exemple 19

Dans l'exemple 18, on a $p_{0,.} \times p_{.,0} = \frac{2}{8} \times \frac{1}{8} = \frac{2}{64} = \frac{1}{32}$ et $p_{0,0} = \frac{1}{8}$ donc le couple aléatoire V = (X, Y) n'est pas indépendant.

2.2.4Moments d'une variable aléatoire discrète :

2.2.4.1Espérances mathématique

Définition 2.2.8

On appelle espérance mathèmatique de la VARD X la quantité, si elle existe : $E(X) = \overline{X} = \sum_{i \in \mathbb{N}} p_i x_i \text{ où } p_i = \mathbb{P}(X = x_i)$

Exemple 20

Si X est la VARD qui code 0 le résultat "pile" et 1 le résultat "face" d'un lancer de pièce de monnaie :

$$E(X) = 0 \times \mathbb{P}(X = 0) + 1 \times \mathbb{P}(X = 1) = 0 \times \frac{1}{2} + 1 \times \frac{1}{2} = \frac{1}{2}.$$

Exemple 21

Pour le jet de dé, on a :

$$E(X) = \sum_{i=1}^{6} i \times p_i = \frac{1}{6} \sum_{i=1}^{6} i = \frac{7}{2} = 3,5$$

2.2.4.2 Paramètres de dispersion

Définition 2.2.9

L'écart absolu de la VARD X est défini par $E(X - \overline{X}) = \sum |x_i - \overline{X}| p_i$

La variance de la VARD X est défini par $V(X) = E((X - \overline{X})^2) = \sum_i (x_i - \overline{X})^2 p_i$

L'écart type de X est défini par $\sigma(X) = \sqrt{V(X)}$

Exemple 22

Si X est la VARD qui code 0 le résultat "pile" et 1 le résultat "face" d'un lancer de pièce de monnaie :

On avait calculé $E(X) = \frac{1}{2}$ (voir l'exemple 20), d'où :

la variance de X est $V(X) = \frac{1}{2}(0 - \frac{1}{2})^2 + \frac{1}{2}(1 - \frac{1}{2})^2 = \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$,

et l'écart type est $\sigma(X) = \sqrt{V(X)} = \sqrt{\frac{1}{4}} = \frac{1}{2}$.

2.2.4.3 Les moments

Définition 2.2.10

- Soit $k \in \mathbb{N}^*$, le moment simple d'ordre k est $m_k = E(X^k)$. Pour une VARD, le moment simple d'ordre k est $m_k = \sum_i x_i^k p_i$
- Soit $k \in \mathbb{N}^*$, le moment centré d'ordre k est $\mu_k = E((X \overline{X})^k)$. Pour une VARD, le moment centré d'ordre k est $\mu_k = \sum_i (x_i - \overline{X})^k p_i$

2.3 Variables aléatoires réelle continue

Définition 2.3.1

Soit $(\Omega, \mathcal{T}, \mathcal{P})$ un espace probabilisé. On considère $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ espace probabilisable, avec $\mathcal{B}_{\mathbb{R}}$ la tribu des boréliens.

Soit $X:\Omega\longrightarrow\mathbb{R}$

$$\omega \longmapsto X(\omega)$$
 telle que $\forall B \in \mathcal{B}_{\mathbb{R}}$, on a $X^{-1}(B) \in \mathcal{T}$.

Alors X est une application mesurable, appelée variable aléatoire réelle, qu'on notera VAR.

 $Si~X(\Omega)$ est un intervalle ou réunion des intervalles de $\mathbb R$, alors X est dite variable aléatoire réelle continue, qu'on notera VARC.

Remarque 2.3.1

La durée de vie d'une lampe ou le salaire d'un individu tiré au sort dans une population sont représentés par des variables aléatoires réelle continues.

2.3.1 Loi de probabilté

Définition 2.3.2

La loi de probabilité d'une VARC est déterminé par la fonction de répartition F, définie pour tout x réel par :

$$F(x) = \mathbb{P}(X \le x) = \mathbb{P}(X^{-1}(]-\infty, x]) = \mathbb{P}\{\omega \in \Omega, X(\omega) < x\}$$

Propriété 2.3.1

Soit X une VARC et F sa fonction de répartition, alors :

$$- \mathbb{P}(X = x) = 0 \ \forall x \in \mathbb{R}$$

$$-\mathbb{P}(a < X < b) = \mathbb{P}(a < X \le b) = \mathbb{P}(a \le X \le b) = \mathbb{P}(a \le X \le b).$$

Remarque 2.3.2

X est une VARC si sa fonction de répartition F est continue.

2.3.2 Densité de probabilité

Définition 2.3.3

- i) Soit f est une fonction à valeurs réelles positives ayant au plus un nombre fini de points de discontinuité. On dit que f est la densité d'une v.a X, si sa fonction de répartition s'écrit sous la forme : $F(x) = \int_{-x}^{x} f(t)dt$
- ii) Une fonction réelle f définie sur $\mathbb R$ est une densité de probabilité si et seulement si
 - $-f(x) \ge 0 \ \forall x \in \mathbb{R}.$
 - f est continue sauf en un nombre fini de points.

$$-\int_{-\infty}^{+\infty} f(t)dt = 1$$

Exemple 23

X est VARC suit la loi de Laplace, si elle admet une fonction de densité définie par : $\forall x \in \mathbb{R}, f(x) = \frac{1}{2}e^{-|x|}$

f définit bien une densité de probabilité car

- $-\forall x \in \mathbb{R}, \ f(x) \ge 0.$
- f est continue sur \mathbb{R} .

$$-\int_{-\infty}^{+\infty} f(x)dx = 2 \times \left[-\frac{e^{-x}}{2} \right]_{0}^{+\infty} = 1$$

La fonction de répartition est définie par $F: x \longmapsto \mathbb{P}(X \leq x) = \int_{-\infty}^{x} f(t)dt$.

On distingue deux cas:

$$-Si \ x < 0, \ F(x) = \int_{-\infty}^{x} \frac{1}{2} e^{t} dt = \frac{1}{2} \left[e^{t} \right]_{-\infty}^{x} = \frac{1}{2} e^{x}.$$

$$-Si \ x \ge 0, \ F(x) = \int_{-\infty}^{0} \frac{1}{2} e^{t} dt + \int_{0}^{x} \frac{1}{2} e^{-t} dt = 1 - \frac{1}{2} e^{-x}$$

$$Ainsi \ on \ a : \ F(x) = \begin{cases} \frac{e^{x}}{2} = f(x) \ si \ x < 0 \\ 1 - \frac{e^{-x}}{2} \ si \ x \ge 0 \end{cases}$$

Propriété 2.3.2

Soient X une v.a de densité f et F sa fonction de répartition. Alors :

- F est continue sur \mathbb{R} .
- F est dérivable en tout point x_0 où f est continue et on a $F'(x_0) = f(x_0)$.

$$- \mathbb{P}(a \le X < b) = \int_{a}^{b} f(t)dt , \ \forall (a,b) \in \mathbb{R}^{2}$$

$$- \mathbb{P}(X \ge a) = \int_{a}^{+\infty} f(t)dt, \ \forall a \in \mathbb{R}.$$

Exemple 24

Pour dimensionner un réseau de téléphonie, on modélise la durée (en minutes) d'une conversation comme variable aléatoire continue X de densité de probabilté

$$f(x) = \begin{cases} \frac{1}{2}e^{\frac{-x}{2}} & \text{si } x \ge 0\\ 0 & \text{si } x < 0 \end{cases}$$

Quelle est la probabilté qu'une conversation dure entre une et deux minutes?

Il suffit de calculer
$$\mathbb{P}(1 \le X \le 2) = \frac{1}{2} \int_{1}^{2} e^{\frac{-x}{2}} = e^{\frac{-1}{2}} - e^{-1} \approx 0.24$$

2.3.3 Moments d'une variable aléatoire continue :

Soit X une variable aléatoire réelle continue VARC.

2.3.3.1 Espérances mathématique

Définition 2.3.4

L'espérance mathématique (ou moyenne) de
$$X$$
 est $E(X) = \int_{-\infty}^{+\infty} x f(x) dx$

Exemple 25

On considère l'exemple 24. Quelle est la duré moyenne d'un appel téléphonique?

La durée moyenne est donnée par le calcul de $E(X) = \int_0^{+\infty} \frac{x}{2} e^{\frac{-x}{2}} dx$.

A l'aide d'une intégration par parties, on trouve E(X) = 2min.

2.3.3.2 Paramètres de dispersion

Définition 2.3.5

– L'écart absolu moyen de
$$X$$
 est défini par $E(|X-\overline{X}|) = \int_{-\infty}^{+\infty} |x_i - \overline{X}| f(x) dx$

La variance de est un paramètre de
$$X$$
 et est définie par $V(X) = E((X - \overline{X})^2) = \int_{-\infty}^{+\infty} (x - \overline{X})^2 f(x) dx$

- L'écart type de X est $\sigma(X) = \sqrt{V(x)}$

2.3.3.3 Les moments

Définition 2.3.6

- Soit
$$k \in \mathbb{N}^*$$
, le moment simple d'ordre k est $m_k = E(X^k) = \int_{-\infty}^{+\infty} x^k f(x) dx$

- Soit
$$k \in \mathbb{N}^*$$
, le moment centré d'ordre k est $\mu_k = E((X - \overline{X})^k) = \int_{-\infty}^{+\infty} (x - \overline{X})^k f(x) dx$

Remarque 2.3.3

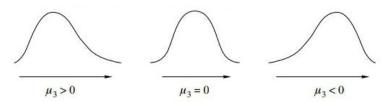
Le moment centré peut s'exprimer en fonction des moments simples. Les premiers moments sont :

$$m_1(X) = E(X)$$
; $\mu_1(X) = 0$; $\mu_2(X) = m_2(X) - m_1^2(X) = V(X)$.

2.3.3.4 Coéfficients d'asymétrie

L'asymétrie d'une distribution peut se caractériser par le moment centré d'ordre trois. La distribution est :

- symétrique si $\mu_3 = 0$;
- dissymétrique étalée vers la droite si $\mu_3 > 0$;
- dissymétrique étalée vers la gauche si $\mu_3 < 0$.



Pour obtenir un paramètre indépendant des unités, on considère les coefficients de symétrie (skewness) :

- de Pearson :
$$\beta_1 = \frac{\mu_3^2}{\mu_2^3}$$

- de Fisher :
$$\gamma_1 = \frac{\mu_3}{\sigma^3}$$

2.3.3.5 Coéfficients d'aplatissement

Ils sont calculés à partir du moment centré d'ordre quatre ; ce sont les coefficients d'aplatissement (kurtosis)

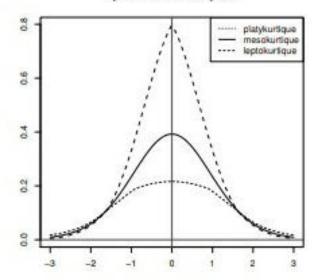
– de Pearson :
$$\beta_2 = \frac{\mu_4}{\sigma^4}$$

- de Fisher :
$$\gamma_2 = \beta_2 - 3 = \frac{\mu_4}{\sigma^4} - 3$$

Le terme de comparaison est ici la loi normale standard pour laquelle $\beta_2 = 3$, avec $\gamma_2 > 0$ pour une distribution plus aplatie que la distribution normale de même moyenne et de même écart type.

30

Aplatissements comparés



2.3.4 Propriétés relatives aux paramètres

Propriété 2.3.3 de l'spérance

- Pour une VAR X constante égale à $k, k \in \mathbb{R}, E(X) = k$.
- Pour tout $(a, b) \in \mathbb{R}^2$, E(aX) = aE(X), E(X + b) = E(X) + bet donc E(aX + b) = aE(X) + b

Theorème 2.3.1 (König- Huygens) Pour toute VAR X, $V(X) = E(X^2) - (E(X))^2$.

Propriété 2.3.4 de la variance et de l'écart-type Soit X une VAR

- 1. Si X est une VAR constante égale à k, $k \in \mathbb{R}$, V(X) = 0.
- 2. La variance est quadratique : $\forall a \in \mathbb{R}, V(aX) = a^2V(X)$
 - La variance est invariante par translation : $\forall b \in \mathbb{R}, V(X+b) = V(X)$
 - Ainsi $\forall (a,b) \in \mathbb{R}^2$, $V(aX+b) = a^2V(X)$
- 3. $\forall (a,b) \in \mathbb{R}^2$, $\sigma(aX+b) = |a| \cdot \sigma(X)$

2.3.5 Propriétés relatives aux couples de variables aléatoires réelles

Définition 2.3.7

Sous réserve d'existence, l'espérance d'un couple est le couple des espérances :

$$E[(X,Y)] = (E(X), E(Y))$$

2.3.5.1 Espérance de la somme de deux variables aléatoires réelles

Propriété 2.3.5

Pour toutes VAR X et Y, sous réserves d'existence,

$$E(X+Y) = E(X) + E(Y)$$

Démonstration : On traite le cas discret

 $X(\Omega) = \{x_i, i \in I\}$ et $Y(\Omega) = \{y_i, j \in J\}$ sont finis ou dénombrables.

Notons
$$S = X + Y$$
, alors $S(\Omega) = \{s_{i,j} = x_i + y_j, (i, j) \in I \times J\}$

et
$$p_{i,j} = \mathbb{P}(X = x_i, Y = y_j) = \mathbb{P}(X = x_i \cap Y = y_j).$$

On a des systèmes complets d'événements, donc d'aprés la formule des probabilités totales :

$$\sum_{j \in J} p_{i,j} = \sum_{j \in J} \mathbb{P}(X = x_i \cap Y = y_j) = \mathbb{P}(X = x_i \cap \left(\bigcup_{j \in J} Y = y_j\right)) = \mathbb{P}(X = x_i \cap \Omega) = p_i$$

De même, $\sum_{i \in I} p_{i,j} = q_j$. Ainsi on a :

$$E(X + Y) = \sum_{i,j} s_{i,j} p_{i,j} = \sum_{i} \sum_{j} (x_i + y_j) p_{i,j}$$

$$= \sum_{i} \sum_{j} x_i p_{i,j} + \sum_{i} \sum_{j} y_j p_{i,j}$$

$$= \sum_{i} x_i \left(\sum_{j} p_{i,j} \right) + \sum_{j} y_j \left(\sum_{i} p_{i,j} \right)$$

$$= \sum_{i} x_i p_i + \sum_{j} y_j q_j$$

$$= E(X) + E(Y).$$

2.3.5.2 Espérance de la produit de deux variables aléatoires réelles discrètes

Si
$$Z = XY$$
, alors $Z(\Omega) = \{z_{i,j} = x_i y_j, (i,j) \in I \times J\}$
et $E(XY) = \sum_{i,j} z_{i,j} p_{i,j} = \sum_{i} \sum_{j} x_i y_j p_{i,j}$

Propriété 2.3.6

Si(X,Y) est indépendant, alors E(XY) = E(X)E(Y). (La réciproque est fausse)

Démonstration:

Du fait de l'indépendance de X et Y, on a $p_{i,j}=p_iq_j$. Alors :

$$E(XY) = \sum_{i} \sum_{j} x_i y_j p_i q_j = \left(\sum_{i} x_i p_i\right) \left(\sum_{j} y_j q_j\right) = E(X)E(Y)$$